Human Metabolism and Excretion of Cancer Chemoprotective Glucosinolates and Isothiocyanates of Cruciferous

نویسندگان

  • Theresa A. Shapiro
  • Jed W. Fahey
  • Kristina L. Wade
  • Katherine K. Stephenson
  • Paul Talalay
چکیده

Isothiocyanates and their naturally occurring glucosinolate precursors are widely consumed as part of a diet rich in cruciferous vegetables. When plant cells are damaged, glucosinolates are released and converted to isothiocyanates by the enzyme myrosinase. Many isothiocyanates inhibit the neoplastic effects of various carcinogens at a number of organ sites. Consequently, these agents are attracting attention as potential chemoprotectors against cancer. As a prerequisite to understanding the mechanism of the protective effects of these compounds, which is thought to involve the modulation of carcinogen metabolism by the induction of phase 2 detoxication enzymes and the inhibition of phase 1 carcinogen-activating enzymes, we examined the fate of ingested isothiocyanates and glucosinolates in humans. Recently developed novel methods for quantifying isothiocyanates (and glucosinolates after their quantitative conversion to isothiocyanates by purified myrosinase) and their urinary metabolites (largely dithiocarbamates) have made possible a detailed examination of the fates of isothiocyanates and glucosinolates of dietary crucifers. In a series of studies in normal volunteers, we made these findings. First, in nonsmokers, urinary dithiocarbamates were detected only after the consumption of cruciferous vegetables and condiments rich in isothiocyanates and/or glucosinolates. In sharp contrast, the consumption of noncrucifers (corn, tomatoes, green beans, and carrots) did not lead to the excretion of dithiocarbamates. Moreover, the quantities of dithiocarbamates excreted were related to the glucosinolate/isothiocyanate profiles of the cruciferous vegetables administered (kale, broccoli, green cabbage, and turnip roots). Second, eating prepared horseradish containing graded doses of Received 5/13/98: revised 9/1/98; accepted 10/7/98. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. I Supported by Program-Project Grant P01 CA44530 from the National Cancer Institute, Department of Health and Human Services: Grants P30 CA06973, NCRR. OPD-GCRC Grant RR-00722. and RR-00052 from the General Clinical Research Center. The Johns Hopkins Hospital (Baltimore. MD): the American Institute for Cancer Research: an instrument grant from the Cancer Research Foundation of America: and the Burroughs Wellcome Fund. 2 To whom requests for reprints should be addressed. at Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine. 725 North Wolfe Street. Baltimore. MD 21205. isothiocyanates (12.3-74 mol; mostly allyl isothiocyanate) led to a rapid excretion of proportionate amounts (42-44%) of urinary dithiocarbamates with first-order kinetics. The ingestion of broccoli in which myrosinase had been heat-inactivated also led to proportionate but low (10-20%) recoveries of urinary dithiocarbamates. Broccoli samples subsequently treated with myrosinase to produce the cognate isothiocyanates were much more completely (47 %) converted to dithiocarbamates. Finally, when bowel microflora were reduced by mechanical cleansing and antibiotics, the conversion of glucosinolates became negligible. These results establish that humans convert substantial amounts of isothiocyanates and glucosinolates to urinary dithiocarbamates that can be easily quantified, thus paving the way for meaningful studies of phase 2 enzyme induction in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables.

Isothiocyanates and their naturally occurring glucosinolate precursors are widely consumed as part of a diet rich in cruciferous vegetables. When plant cells are damaged, glucosinolates are released and converted to isothiocyanates by the enzyme myrosinase. Many isothiocyanates inhibit the neoplastic effects of various carcinogens at a number of organ sites. Consequently, these agents are attra...

متن کامل

Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans.

Broccoli sprouts are a rich source of glucosinolates and isothiocyanates that induce phase 2 detoxication enzymes, boost antioxidant status, and protect animals against chemically induced cancer. Glucosinolates are hydrolyzed by myrosinase (an enzyme found in plants and bowel microflora) to form isothiocyanates. In vivo, isothiocyanates are conjugated with glutathione and then sequentially meta...

متن کامل

Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats.

The breakdown of glucosinolates, a group of thioglucoside compounds found in cruciferous plants, is catalysed by dietary or microbial myrosinase. This hydrolysis releases a range of breakdown products among which are the isothiocyanates, which have been implicated in the cancer-protective effects of cruciferous vegetables. The respective involvement of plant myrosinase and gut bacterial myrosin...

متن کامل

Cruciferous vegetables and colo-rectal cancer.

Cruciferous vegetables have been studied extensively for their chemoprotective effects. Although they contain many bioactive compounds, the anti-carcinogenic actions of cruciferous vegetables are commonly attributed to their content of glucosinolates. Glucosinolates are relatively biologically inert but can be hydrolysed to a range of bioactive compounds such as isothiocyanates (ITC) and indole...

متن کامل

Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model.

Cruciferous vegetables, such as Brassica, which contain substantial quantities of glucosinolates, have been suggested to possess anticarcinogenic activity. Cutting and chewing of cruciferous vegetables releases the thioglucosidase enzyme myrosinase, which degrades glucosinolates to isothiocyanates and other minor metabolites. Cooking of cruciferous vegetables inactivates the myrosinase enzyme, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005